Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Ecotoxicol Environ Saf ; 267: 115628, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890259

RESUMO

Trimethyltin chloride (TMT) is a highly toxic organotin compound often used in plastic heat stabilizers, chemical pesticides, and wood preservatives. TMT accumulates mainly through the environment and food chain. Exposure to organotin compounds is associated with disorders of glucolipid metabolism and obesity. The mechanism by which TMT damages pancreatic tissue is unclear. For this purpose, a subacute exposure model of TMT was designed for this experiment to study the mechanism of damage by TMT on islet. The fasting blood glucose and blood lipid content of mice exposed to TMT were significantly increased. Histopathological and ultrastructural observation and analysis showed that the TMT-exposed group had inflammatory cell infiltration and necrosis. Then, mouse pancreatic islet tumour cells (MIN-6) were treated with TMT. Autophagy levels were detected by fluorescence microscopy. Real-time quantitative polymerase chain reaction and Western blotting were used for verification. A large amount of autophagy occurred at a low concentration of TMT but stagnated at a high concentration. Excessive autophagy activates apoptosis when exposed to low levels of TMT. With the increase in TMT concentration, the expression of necrosis-related genes increased. Taken together, different concentrations of TMT induced apoptosis and necrosis through autophagy disturbance. TMT impairs pancreatic (islet ß cell) function.


Assuntos
Compostos Orgânicos de Estanho , Compostos de Trimetilestanho , Animais , Camundongos , Apoptose , Necrose/induzido quimicamente , Compostos de Trimetilestanho/toxicidade , Autofagia , Compostos Orgânicos de Estanho/toxicidade
2.
Neurotoxicology ; 99: 162-176, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838251

RESUMO

Trimethyltin chloride (TMT) is a potent neurotoxin widely used as a constituent of polyvinyl chloride plastic in the industrial and agricultural fields. However, the underlying mechanisms by which TMT leads to neurotoxicity remain elusive. In the present study, we constructed a dose and time dependent neurotoxic mouse model of TMT exposure to explore the molecular mechanisms involved in TMT-induced neurological damage. Based on this model, the cognitive ability of TMT exposed mice was assessed by the Morris water maze test and a passive avoidance task. The ultrastructure of hippocampus was analyzed by the transmission electron microscope. Subsequently, proteomics integrated with bioinformatics and experimental verification were employed to reveal potential mechanisms of TMT-induced neurotoxicity. Gene ontology (GO) and pathway enrichment analysis were done by using Metascape and GeneCards database respectively. Our results demonstrated that TMT-exposed mice exhibited cognitive disorder, and mitochondrial respiratory chain abnormality of the hippocampus. Proteomics data showed that a total of 7303 proteins were identified in hippocampus of mice of which 224 ones displayed a 1.5-fold increase or decrease in TMT exposed mice compared with controls. Further analysis indicated that these proteins were mainly involved in tricarboxylic acid (TCA) cycle and respiratory electron transport, proteasome degradation, and multiple metabolic pathways as well as inflammatory signaling pathways. Some proteins, including succinate-CoA ligase subunit (Suclg1), NADH dehydrogenase subunit 5 (Nd5), NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2 (Ndufa4l2) and cytochrome c oxidase assembly factor 7 (Coa7), which were closely related to mitochondrial respiratory electron transport, showed TMT dose and time dependent changes in the hippocampus of mice. Moreover, apoptotic molecules Bax and cleaved caspase-3 were up-regulated, while anti-apoptotic Bcl-2 was down-regulated compared with controls. In conclusion, our findings suggest that impairment of mitochondrial respiratory chain transport and promotion of apoptosis are the potential mechanisms of TMT induced hippocampus toxicity in mice.


Assuntos
Síndromes Neurotóxicas , Compostos de Trimetilestanho , Camundongos , Animais , Proteômica , NADH Desidrogenase/metabolismo , Compostos de Trimetilestanho/toxicidade , Compostos de Trimetilestanho/metabolismo , Mitocôndrias/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Hipocampo/metabolismo
3.
Reprod Toxicol ; 119: 108395, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164060

RESUMO

Exposure to toxic substances during postnatal period is one of the major factors causing retinal developmental defects. The developmental toxicity of trimethyltin chloride (TMT), a byproduct of an organotin compound widely used in agriculture and industrial fields, has been reported; however, the effect on the mammalian retina during postnatal development and the mechanism have not been elucidated to date. We exposed 0.75 and 1.5 mg/kg of TMT to neonatal ICR mice (1:1 ratio of male and female) up to postnatal day 14 and performed analysis of the retina: histopathology, apoptosis, electrophysiological function, glutamate concentration, gene expression, and fluorescence immunostaining. Exposure to TMT caused delayed eye opening, eye growth defect and thinning of retinal layer. In addition, apoptosis occurred in the retina along with b-wave and spiking activity changes in the micro-electroretinogram. These changes were accompanied by an increase in the concentration of glutamate, upregulation of astrocyte-related genes, and increased expression of glial excitatory amino acid transporter (EAAT) 1 and 2. Conversely, EAAT 3, 4, and 5, mainly located in the neurons, were decreased. Our results are the first to prove postnatal retinal developmental neurotoxicity of TMT at the mammalian model and analyze the molecular, functional as well as morphological aspects to elucidate possible mechanisms: glutamate toxicity with EAAT expression changes. These mechanisms may suggest not only a strategy to treat but also a clue to prevent postnatal retina developmental toxicity of toxic substances.


Assuntos
Ácido Glutâmico , Compostos de Trimetilestanho , Animais , Camundongos , Masculino , Feminino , Camundongos Endogâmicos ICR , Compostos de Trimetilestanho/toxicidade , Neurônios/metabolismo , Proteínas de Membrana Transportadoras , Mamíferos/metabolismo
4.
Toxicology ; 486: 153432, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696940

RESUMO

Neuroinflammation is one of the important mechanisms of trimethyltin chloride (TMT) central neurotoxicity. Artemisinin (ARS) is a well-known antimalarial drug that also has significant anti-inflammatory effects. Prokineticin 2 (PK2) is a small molecule secreted protein that is widely expressed in the nervous system and plays a key role in the development of neuroinflammation. However, it remains unclear whether ARS can ameliorate neuroinflammation caused by TMT and whether PK2/PKRs signaling pathway plays a part in it. In this research, male Balb/c mice were administered TMT (2.8 mg/kg, i.p.) followed by immunohistochemistry to assess the expression of PK2, PKR1, and PKR2 proteins in the hippocampus. Network pharmacology was used to predict the intersection targets of ARS, central nervous system(CNS) injury and TMT. The neurobehavior of mice was evaluated by behavioral scores. Histopathological damage of the hippocampus was evaluated by HE, Nissl and Electron microscopy. Western blotting was used to identify the expression of synapse-related proteins (PSD95, SYN1, Synaptophysin), PK system-related proteins (PK2, PKR1, PKR2), and inflammation-related proteins (TNF-α, NF-κB p65). Immunohistochemistry showed that TMT resulted in elevated PK2 and PKR2 protein expression in the CA2 and CA3 regions of the hippocampus in mice, while PKR1 protein was not significantly altered. Network pharmacology showed that PK2 could interact with the intersectional targets of ARS, CNS injury, and TMT. ARS remarkably attenuated TMT-induced seizures and hippocampal histological damage. Further studies demonstrated that ARS treatment attenuated TMT-induced hippocampal ultrastructural damage, possibly by increasing the number of rough endoplasmic reticulum and mitochondria as well as upregulating the levels of synapse-associated proteins (PSD95, SYN1, Synaptophysin). Western blotting results revealed that ARS downregulated TMT-induced TNF-α and NF-κB p65 protein levels. In addition, ARS also decreased TMT-induced protein expression of PK2 and PKR2 in the mouse hippocampus, but had no significant effect on PKR1 protein expression. Our results suggested that ARS ameliorated TMT-induced abnormal neural behavior and hippocampal injury, which may be achieved by regulating PK2/PKRs inflammatory pathway and ameliorating synaptic injury. Therefore, we suggest that PK2/PKRs pathway may be involved in TMT neurotoxicity and ARS may be a promising drug that can relieve TMT neurotoxicity.


Assuntos
Artemisininas , Neuropeptídeos , Compostos de Trimetilestanho , Camundongos , Animais , Masculino , Sinaptofisina , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Hipocampo , Compostos de Trimetilestanho/toxicidade , Artemisininas/farmacologia , Artemisininas/metabolismo
5.
Bull Exp Biol Med ; 173(5): 660-664, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36214987

RESUMO

Ultrastructural studies of the hippocampus and the prefrontal cortex of rats were performed 7, 30, and 50 days after their damage by neurotoxicant trimethyltin chloride (TMT). Significant damage to neurons was observed in both brain structures. In the hippocampus, a large number of autophagosomes (0.9±0.1 per µm2) appeared in the soma of neurons, dendrites, and axons in 7 days after intoxication. In addition, we observed the appearance of hyperchromic neurons with abnormal structure of mitochondria. In the prefrontal cortex, damaged neurons also contained autophagosomes, but their number was significantly lower (0.3±0.1 per µm2). The number of autophagosomes decreased with increasing the time after TMT administration: 30 days after injection, the content of autophagosomes in the hippocampus was 0.10±0.01 per µm2, while in the prefrontal cortex, autophagosomes were no longer found. We hypothesized that autophagy in the hippocampus was not effective enough to prevent neuronal death caused by the neurotoxicant.


Assuntos
Compostos de Trimetilestanho , Animais , Autofagia , Neurônios , Córtex Pré-Frontal , Ratos , Compostos de Trimetilestanho/toxicidade
6.
Toxicol Pathol ; 50(6): 754-762, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36125102

RESUMO

As regulators of homeostasis, astrocytes undergo morphological changes after injury to limit the insult in central nervous system (CNS). Trimethyltin (TMT) is a known neurotoxicant that induces reactive astrogliosis in rat CNS. To evaluate the degree of reactive astrogliosis, the assessment relies on manual counting or semiquantitative scoring. We hypothesized that deep learning algorithm could be used to identify the grade of reactive astrogliosis in immunoperoxidase-stained sections in a quantitative manner. The astrocyte algorithm was created using a commercial supervised deep learning platform and the used training set consisted of 940 astrocytes manually annotated from hippocampus and cortex. Glial fibrillary acidic protein-labeled brain sections of rat TMT model were analyzed for astrocytes with the trained algorithm. Algorithm was able to count the number of individual cells, cell areas, and circumferences. The astrocyte algorithm identified astrocytes with varying sizes from immunostained sections with high confidence. Algorithm analysis data revealed a novel morphometric marker based on cell area and circumference. This marker correlated with the time-dependent progression of the neurotoxic profile of TMT. This study highlights the potential of using novel deep learning-based image analysis tools in neurotoxicity and pharmacology studies.


Assuntos
Aprendizado Profundo , Compostos de Trimetilestanho , Animais , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose , Hipocampo/metabolismo , Ratos , Compostos de Trimetilestanho/toxicidade
7.
Neurochem Res ; 47(9): 2780-2792, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35737203

RESUMO

Trimethyltin (TMT) has been used as a cytotoxin to neurons rather than glial cells in the mammalian hippocampus. The systemic administration of TMT led to declined fluorescence of ZnAF-2 DA staining as a marker of intact mossy fibers and increased fluorescence of Fluoro-Jade B staining as a marker of degenerated neurons during the initial 2 to 5 days after the administration with later ameliorations within 30 days in the hippocampal dentate gyrus (DG) and CA3 region in mice. On immunoblotting analysis, both GABABR1 and GABABR2 subunit levels increased during 15 to 30 days after TMT along with significant decreases in glutamatergic GluA1 and GluA2/3 receptor subunit levels during 2 to 7 days in the DG, but not in other hippocampal regions such as CA1 and CA3 regions. Immunohistochemical analysis revealed the constitutive and inducible expression of GABABR2 subunit in cells immunoreactive to an astrocytic marker as well as neuronal markers in the DG with the absence of neither GABABR1a nor GABABR1b subunit from cells positive to an astrocytic marker. These results suggest that both GABABR1 and GABABR2 subunits may be up-regulated in cells other than neurons and astroglia in the DG at a late stage of TMT intoxication in mice.


Assuntos
Compostos de Trimetilestanho , Animais , Giro Denteado/metabolismo , Hipocampo/metabolismo , Mamíferos , Camundongos , Receptores de GABA-B , Compostos de Trimetilestanho/toxicidade , Ácido gama-Aminobutírico/metabolismo
8.
J Neuroinflammation ; 19(1): 143, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690816

RESUMO

BACKGROUND: Trimethyltin (TMT) is a potent neurotoxicant that leads to hippocampal neurodegeneration. Regulatory T cells (Tregs) play an important role in maintaining the immune balance in the central nervous system (CNS), but their activities are impaired in neurodegenerative diseases. In this study, we aimed to determine whether adoptive transfer of Tregs, as a living drug, ameliorates hippocampal neurodegeneration in TMT-intoxicated mice. METHODS: CD4+CD25+ Tregs were expanded in vitro and adoptively transferred to TMT-treated mice. First, we explored the effects of Tregs on behavioral deficits using the Morris water maze and elevated plus maze tests. Biomarkers related to memory formation, such as cAMP response element-binding protein (CREB), protein kinase C (PKC), neuronal nuclear protein (NeuN), nerve growth factor (NGF), and ionized calcium binding adaptor molecule 1 (Iba1) in the hippocampus were examined by immunohistochemistry after killing the mouse. To investigate the neuroinflammatory responses, the polarization status of microglia was examined in vivo and in vitro using real-time reverse transcription polymerase chain reaction (rtPCR) and Enzyme-linked immunosorbent assay (ELISA). Additionally, the inhibitory effects of Tregs on TMT-induced microglial activation were examined using time-lapse live imaging in vitro with an activation-specific fluorescence probe, CDr20. RESULTS: Adoptive transfer of Tregs improved spatial learning and memory functions and reduced anxiety in TMT-intoxicated mice. Additionally, adoptive transfer of Tregs reduced neuronal loss and recovered the expression of neurogenesis enhancing molecules in the hippocampi of TMT-intoxicated mice. In particular, Tregs inhibited microglial activation and pro-inflammatory cytokine release in the hippocampi of TMT-intoxicated mice. The inhibitory effects of TMT were also confirmed via in vitro live time-lapse imaging in a Treg/microglia co-culture system. CONCLUSIONS: These data suggest that adoptive transfer of Tregs ameliorates disease progression in TMT-induced neurodegeneration by promoting neurogenesis and modulating microglial activation and polarization.


Assuntos
Fármacos Neuroprotetores , Compostos de Trimetilestanho , Animais , Hipocampo/metabolismo , Camundongos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Linfócitos T Reguladores , Compostos de Trimetilestanho/metabolismo , Compostos de Trimetilestanho/toxicidade
9.
Toxicol Lett ; 352: 54-60, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600096

RESUMO

Presented is a diffusion weighted imaging protocol with measures of apparent diffusion coefficient which when registered to a 3D MRI rat brain atlas provides site-specific information on 173 different brain areas. This protocol coined "in vivo neuropathology" was used to follow the progressive neurotoxic effects of trimethyltin on global gray matter microarchitecture. Four rats were given an IP injection of 7 mg/kg of the neurotoxin trimethyltin and imaged for changes in water diffusivity at 3- and 7-days post injections. At 3 days, there was a significant decrease in apparent diffusion coefficient, a proxy for cytotoxic edema, in several cortical areas and cerebellum. At 7 days the level of injury expanded to include most of the cerebral cortex, hippocampus, olfactory system, and cerebellum/brainstem corroborating much of the work done with traditional histopathology. Analysis is achieved with a minimum number of rats adhering to the laws and regulations around the humane care and use of laboratory animals, providing an alternative to the traditional tests for assessing drug neurotoxicity. "In vivo neuropathology" can minimize the cost, expedite the process, and identify subtle changes in site-specific brain microarchitecture across the entire brain.


Assuntos
Edema Encefálico/induzido quimicamente , Edema Encefálico/diagnóstico por imagem , Inflamação/induzido quimicamente , Inflamação/diagnóstico por imagem , Compostos de Trimetilestanho/toxicidade , Animais , Edema Encefálico/diagnóstico , Edema Encefálico/patologia , Inflamação/patologia , Masculino , Ratos , Ratos Sprague-Dawley
10.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360774

RESUMO

Trimethyltin (TMT) is an irreversible neurotoxicant. Because prenatal TMT exposure has been reported to induce behavioral changes, this study was conducted to observe gender differences and epigenetic changes using a mouse model. In behavioral testing of offspring at 5 weeks of age, the total times spent in the center, corner, or border zones in the male prenatal TMT-exposed mice were less than those of control unexposed mice in the open-field test. Female TMT-exposed mice scored lower on total numbers of arm entries and percentages of alternations than controls in the Y-maze test with lower body weight. We found that only TMT-exposed males had fewer copies of mtDNA in the hippocampus and prefrontal cortex region than controls. Additional epigenetic changes, including increased 5-methyl cytosine/5-hydroxymethyl cytosine levels in the male TMT hippocampus, were observed. After methylation binding domain (MBD) sequencing, multiple signaling pathways related to metabolism and neurodevelopment, including FoxO signaling, were identified by pathway analysis for differentially methylated regions (DMRs). Increased FOXO3 and decreased ASCL1 expression were also observed in male TMT hippocampi. This study suggests that sex differences and epigenetics should be more carefully considered in prenatal toxicology studies.


Assuntos
Metilação de DNA/efeitos dos fármacos , Hipocampo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Compostos de Trimetilestanho/toxicidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/patologia , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Caracteres Sexuais
11.
Mol Cell Biochem ; 476(12): 4323-4330, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34427815

RESUMO

Previously it was shown that for reduction of anxiety and stress of experimental animals, preventive handling seems to be one of the most effective methods. The present study was oriented on Na,K-ATPase, a key enzyme for maintaining proper concentrations of intracellular sodium and potassium ions. Malfunction of this enzyme has an essential role in the development of neurodegenerative diseases. It is known that this enzyme requires approximately 50% of the energy available to the brain. Therefore in the present study utilization of the energy source ATP by Na,K-ATPase in the frontal cerebral cortex, using the method of enzyme kinetics was investigated. As a model of neurodegeneration treatment with trimethyltin (TMT) was applied. Daily handling (10 min/day) of healthy rats and rats suffering neurodegeneration induced by administration of TMT in a dose of (7.5 mg/kg), at postnatal days 60-102 altered the expression of catalytic subunits of Na,K-ATPase as well as kinetic properties of this enzyme in the frontal cerebral cortex of adult male Wistar rats. In addition to the previously published beneficial effect on spatial memory, daily treatment of rats was accompanied by improved maintenance of sodium homeostasis in the frontal cortex. The key system responsible for this process, Na,K-ATPase, was able to utilize better the energy substrate ATP. In rats, manipulation of TMT-induced neurodegeneration promoted the expression of the α2 isoform of the enzyme, which is typical for glial cells. In healthy rats, manipulation was followed by increased expression of the α3 subunit, which is typical of neurons.


Assuntos
Trifosfato de Adenosina/metabolismo , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Doenças Neurodegenerativas/prevenção & controle , ATPase Trocadora de Sódio-Potássio/metabolismo , Memória Espacial/fisiologia , Compostos de Trimetilestanho/toxicidade , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Masculino , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Ratos , Ratos Wistar
12.
Artigo em Inglês | MEDLINE | ID: mdl-34246797

RESUMO

Trimethyltin chloride (TMT) is a highly toxic substance produced by organotin heat stabilizers in the synthesis of polyvinyl chloride (PVC) products. TMT is widely used in industry and agriculture. The aim of this study was to investigate the effects of TMT-induced cytotoxicity in intestinal porcine epithelial cells (IPEC-J2). Our study showed that TMT induced a decline in cell viability of IPEC-J2, caused cell shrinkage and rounded cell morphology, reduced the number of proliferating cells and the expression of proliferating cell nuclear antigen (PCNA), and increased lactate dehydrogenase (LDH) activity in cell supernatants. Simultaneously, TMT lowered the mRNA expression of Cyclin B1, and Cyclin D1, but increased P21 and P27 expression. The cell cycle progression was arrested from the G1 to the S phase. Furthermore, the mRNA expression of Bax/Bcl-2 ratio and the protein expression of cleaved Caspase-9 and cleaved Caspase-3 were significantly increased after TMT treatment, while the ratio of advanced apoptotic cells was elevated. These results indicated that TMT blocked the cell cycle, inhibited IPEC-J2 proliferation, and induced apoptosis.


Assuntos
Ciclo Celular/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Proteínas/metabolismo , Compostos de Trimetilestanho/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Epiteliais , Intestinos/citologia , Proteínas/genética , Suínos
13.
Toxicol Lett ; 345: 67-76, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33865920

RESUMO

Trimethyltin chloride (TMT) is a by-product in the synthesis of organotin, a plastic stabilizer. With the rapid development of industry, the occupational hazards caused by TMT cannot be ignored. TMT is a typical neurotoxicant, which mainly damages the limbic system and brainstem of the nervous system. Previous studies have demonstrated that the neurotoxicity induced by TMT is linked to the inhibition of energy metabolism, but the underlying mechanism remains elusive. In order to investigate the mechanism of TMT-induced inhibition of energy metabolism, C57BL/6 male mice were administered by IP injection in different TMT doses (0 mg/kg, 1.00 mg/kg, 2.15 mg/kg and 4.64 mg/kg) and times (1d, 3d and 6d), and then the changes of superoxide dismutase (SOD) activity, malondialdehyde (MDA) level and Na+-K+-ATPase activity in cerebral cortex, cerebellum, hippocampus, pons, medulla oblongata of mice, the expressions of Na+-K+-ATPase protein, AMP-activated protein kinase (AMPK), phosphorylated AMP-activated protein kinase(p-AMPK)and peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) in hippocampus and medulla oblongata were measured; the effects of TMT on the viability, the activity of SOD, glutathione (GSH) and Na+-K+-ATPase, MDA level, and the expression of PGC-1α and Na+-K+-ATPase protein in N2a cells were measured by different TMT doses and times, in order to verify the experiments in vivo. Our results found that most of the mice showed depression, tremor, epilepsy, spasm and other symptoms after TMT exposure. Moreover, with the increase of TMT dose, the activity of Na+-K+-ATPase and the expressions of AMPK protein in the hippocampus and medulla oblongata of mice decreased, and the expressions of p-AMPK protein increased. Peroxidative damage was evident in hippocampus, medulla oblongata of mice and N2a cells, and the expression of PGC-1α and Na+-K+-ATPase protein was significantly down-regulated. Therefore, it is reasonable to believe that TMT-induced neurotoxic symptoms and inhibition of energy metabolism may be related to p-AMPK and down-regulation of PGC-1α in the hippocampus and medulla oblongata.


Assuntos
Encéfalo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Epilepsia/induzido quimicamente , Peroxidação de Lipídeos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Compostos de Trimetilestanho/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Epilepsia/metabolismo , Epilepsia/patologia , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/metabolismo
14.
Int J Toxicol ; 40(4): 367-379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33878910

RESUMO

The organotin, trimethyltin (TMT), is a highly toxic compound. In this study, silver-stained rat brain sections were qualitatively and quantitatively evaluated for degeneration after systemic treatment with TMT. Degenerated neurons were counted using image analysis methods available in the HALO image analysis software. Specific brain areas including the cortex, inferior and superior colliculus, and thalamus were quantitatively analyzed. Our results indicate extensive and widespread damage to the rat brain after systemic administration of TMT. Qualitative results suggest severe TMT-induced toxicity 3 and 7 days after the administration of TMT. Trimethyltin toxicity was greatest in the hippocampus, olfactory area, cerebellum, pons, mammillary nucleus, inferior and superior colliculus, hypoglossal nucleus, thalamus, and cerebellar Purkinje cells. Quantification showed that the optic layer of the superior colliculus exhibited significantly more degeneration compared to layers above and below. The inferior colliculus showed greater degeneration in the dorsal area relative to the central area. Similarly, in cortical layers, there was greater neurodegeneration in deeper layers compared to superficial layers. Quantification of damage in various thalamic nuclei showed that the greatest degeneration occurred in midline and intralaminar nuclei. These results suggest selective neuronal network vulnerability to TMT-related toxicity in the rat brain.


Assuntos
Encéfalo/efeitos dos fármacos , Compostos de Trimetilestanho/toxicidade , Animais , Encéfalo/patologia , Masculino , Ratos , Ratos Sprague-Dawley
15.
In Vivo ; 35(2): 793-797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622871

RESUMO

BACKGROUND/AIM: In this study, we investigated sex-specific effects of acute exposure to trimethyltin, a known neurotoxicant on metabolic steroids. MATERIALS AND METHODS: We administered intraperitoneally 2.3 mg/kg trimethyltin to 4-week-old male mice and measured the levels of metabolic steroids 24 h after treatment. We also measured mRNA and protein levels of cytochrome P450 1B1 using real-time polymerase chain reaction and western blotting. RESULTS: Cortisol levels in the cortex increased in both sexes following acute trimethyltin exposure. The estradiol levels decreased, and the 4-hydroxyestradiol levels increased only in females. We also observed increased cytochrome P450 1B1 mRNA and protein levels only in the female cortex. CONCLUSION: Acute trimethyltin exposure induces distinct sex-specific metabolic changes in the brain before significant sexual maturation.


Assuntos
Compostos de Trimetilestanho , Animais , Encéfalo , Estrogênios , Feminino , Masculino , Camundongos , RNA Mensageiro/genética , Compostos de Trimetilestanho/toxicidade
16.
Mol Neurobiol ; 58(4): 1792-1805, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33394334

RESUMO

Astrocytes are the first responders to noxious stimuli by undergoing cellular and functional transition referred as reactive gliosis. Every acute or chronic disorder is accompanied by reactive gliosis, which could be categorized as detrimental (A1) of beneficial (A2) for nervous tissue. Another signature of pathological astrocyte activation is disturbed Ca2+ homeostasis, a common denominator of neurodegenerative diseases. Deregulation of Ca+ signaling further contributes to production of pro-inflammatory cytokines and reactive oxygen species. Trimethyltin (TMT) intoxication is a widely used model of hippocampal degeneration, sharing behavioral and molecular hallmarks of Alzheimer's disease (AD), thus representing a useful model of AD-like pathology. However, the role of astrocyte in the etiopathology of TMT-induced degeneration as well as in AD is not fully understood. In an effort to elucidate the role of astrocytes in such pathological processes, we examined in vitro effects of TMT on primary cortical astrocytes. The application of a range of TMT concentrations (5, 10, 50, and 100 µM) revealed changes in [Ca2+]i in a dose-dependent manner. Specifically, TMT-induced Ca2+ transients were due to L-type voltage-gated calcium channels (VGCC). Additionally, TMT induced mitochondrial depolarization independent of extracellular Ca2+ and disturbed antioxidative defense of astrocyte in several time points (4, 6, and 24 h) after 10 µM TMT intoxication, inducing oxidative and nitrosative stress. Chronic exposure (24 h) to 10 µM TMT induced strong upregulation of main pro-inflammatory factors, components of signaling pathways in astrocyte activation, A1 markers, and VGCC. Taken together, our results provide an insight into cellular and molecular events of astrocyte activation in chronic neuroinflammation.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Inflamação/patologia , Espaço Intracelular/metabolismo , Compostos de Trimetilestanho/toxicidade , Análise de Variância , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Ratos Wistar
17.
Autophagy ; 17(4): 903-924, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32160081

RESUMO

Trimethyltin chloride (TMT) is widely used as a constituent of fungicides and plastic stabilizers in the industrial and agricultural fields, and is generally acknowledged to have potent neurotoxicity, especially in the hippocampus; however, the mechanism of induction of neurotoxicity by TMT remains elusive. Herein, we exposed Neuro-2a cells to different concentrations of TMT (2, 4, and 8 µM) for 24 h. Proteomic analysis, coupled with bioinformatics analysis, revealed the important role of macroautophagy/autophagy-lysosome machinery in TMT-induced neurotoxicity. Further analysis indicated significant impairment of autophagic flux by TMT via suppressed lysosomal function, such as by inhibiting lysosomal proteolysis and changing the lysosomal pH, thereby contributing to defects in autophagic clearance and subsequently leading to nerve cell death. Mechanistically, molecular interaction networks of Ingenuity Pathway Analysis identified a downregulated molecule, KIF5A (kinesin family member 5A), as a key target in TMT-impaired autophagic flux. TMT decreased KIF5A protein expression, disrupted the interaction between KIF5A and lysosome, and impaired lysosomal axonal transport. Moreover, Kif5a overexpression restored axonal transport, increased lysosomal dysfunction, and antagonized TMT-induced neurotoxicity in vitro. Importantly, in TMT-administered mice with seizure symptoms and histomorphological injury in the hippocampus, TMT inhibited KIF5A expression in the hippocampus. Gene transfer of Kif5a enhanced autophagic clearance in the hippocampus and alleviated TMT-induced neurotoxicity in vivo. Our results are the first to demonstrate KIF5A-dependent axonal transport deficiency to cause autophagic flux impairment via disturbance of lysosomal function in TMT-induced neurotoxicity; manipulation of KIF5A may be a therapeutic approach for antagonizing TMT-induced neurotoxicity.Abbreviations: 3-MA: 3-methyladenine; AAV: adeno-associated virus; ACTB: actin beta; AGC: automatic gain control; ATG: autophagy-related; ATP6V0D1: ATPase H+ transporting lysosomal V0 subunit D1; ATP6V1E1: ATPase H+ transporting lysosomal V1 subunit E1; CA: cornu ammonis; CQ: chloroquine; CTSB: cathepsin B; CTSD: cathepsin D; DCTN1: dynactin subunit 1; DG: dentate gyrus; DYNLL1: dynein light chain LC8-type 1; FBS: fetal bovine serum; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IPA: Ingenuity Pathway Analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; KIF5A: kinesin family member 5A; LAMP: lysosomal-associated membrane protein; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PRM: parallel reaction monitoring; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; SYP: synaptophysin; TAX1BP1: Tax1 binding protein 1; TMT: trimethyltin chloride; TUB: tubulin.


Assuntos
Autofagia/efeitos dos fármacos , Transporte Axonal/efeitos dos fármacos , Cinesinas/metabolismo , Neurotoxinas/toxicidade , Compostos de Trimetilestanho/toxicidade , Animais , Animais Recém-Nascidos , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Linhagem Celular , Hipocampo/patologia , Cinesinas/deficiência , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteômica
18.
J Mol Neurosci ; 71(3): 613-617, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32803646

RESUMO

Anti-inflammatory cytokine interleukin-10 (IL-10) plays a crucial role in controlling the resolution of inflammation. In this study, we aimed to assess gene expression and the level of IL-10 in the hippocampus and prefrontal cortex of rats, after a single injection of neurotoxicant trimethyltin chloride (TMT). It was shown that 4 weeks after the treatment with TMT, the level of IL-10 in the prefrontal cortex, but not in the hippocampus of TMT-treated rats, was increased. However, expression level of IL-10 mRNA was upregulated both in the hippocampus and in the prefrontal cortex 3 weeks after the injection. Concomitantly, within the same post-treatment period, the expression level of the cyclooxygenase-2 was upregulated in both brain structures, indicating the induction of neuroinflammation. Considering that TMT leads to the death of neurons mainly in the hippocampus, we assume that in contrast to the prefrontal cortex, the level of anti-inflammatory cytokine IL-10 in the hippocampus is not sufficiently increased to prevent the damaging effect of the neurotoxicant. Therefore, an exogenous increase in the level of IL-10 may be useful for the survival of neurons in conditions of neurotoxic damage to the hippocampus.


Assuntos
Hipocampo/metabolismo , Interleucina-10/metabolismo , Córtex Pré-Frontal/metabolismo , Compostos de Trimetilestanho/toxicidade , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Interleucina-10/genética , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
19.
Life Sci ; 262: 118494, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991881

RESUMO

AIMS: We here investigated the effect of late- and post-ictal treatment with rottlerin, a polyphenol compound isolated from Mallotus philippinensis, on delayed apoptotic neuronal death induced by trimethyltin (TMT) in mice. MAIN METHODS: Male C57BL/6N mice received a single injection of TMT (2.4 mg/kg, i.p.), and mice were treated with rottlerin after a peak time (i.e., 2 d post-TMT) of convulsive behaviors and apoptotic cell death (5.0 mg/kg, i.p. at 3 and 4 d after TMT injection). Object location test and tail suspension test were performed at 5 d after TMT injection. In addition, changes in the expression of apoptotic and neurogenic markers in the dentate gyrus were examined. KEY FINDINGS: Late- and post-ictal treatment with rottlerin suppressed delayed neuronal apoptosis in the dentate gyrus, and attenuated memory impairments (as evaluated by object location test) and depression-like behaviors (as evaluated by tail suspension test) at 5 days after TMT injection in mice. In addition, rottlerin enhanced the expression of Sox2 and DCX, and facilitated p-ERK expression in BrdU-incorporated cells in the dentate gyrus of TMT-treated mice. Rottlerin also increased p-Akt expression, and attenuated the increase in the ratio of pro-apoptotic factors/anti-apoptotic factors, and consequent cytosolic cytochrome c release and caspase-3 cleavage. Rottlerin-mediated action was significantly reversed by SL327, an ERK inhibitor. SIGNIFICANCE: Our results suggest that late- and post-ictal treatment with rottlerin attenuates TMT-induced delayed neuronal apoptosis in the dentate gyrus of mice via promotion of neurogenesis and inhibition of an on-going apoptotic process through up-regulation of p-ERK.


Assuntos
Acetofenonas/farmacologia , Apoptose/efeitos dos fármacos , Benzopiranos/farmacologia , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Acetofenonas/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Benzopiranos/administração & dosagem , Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Proteína Duplacortina , MAP Quinases Reguladas por Sinal Extracelular/genética , Masculino , Transtornos da Memória/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Convulsões/prevenção & controle , Fatores de Tempo , Compostos de Trimetilestanho/toxicidade , Regulação para Cima
20.
Toxicology ; 444: 152577, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32898603

RESUMO

Trimethyltin (TMT) is widely used in industry and agriculture. The present study aims to clarify the effects of in vitro TMT exposure on androgen biosynthesis and metabolism in immature Leydig cells (ILCs), and to unveil the underlying mechanism. It was found that 1-10µM TMT decreased ILC androgen productions under basal conditions. TMT at 10µM decreased luteinizing hormone (LH) or 8-Br-cAMP (8BR)-stimulated androgen productions from ILCs. TMT at 10µM decreased 22R-hydroxycholesterol (22R) and androstenedione (D4)-mediated androgen productions from ILCs. TMT at 0.1-10µM down-regulated the mRNA or protein expression levels of STAR, CYP11A1, 17ß-HSD3, or NR5A1. TMT at 10µM directly inhibited the enzyme activities of CYP11A1 and 17ß-HSD3. In conclusion, the present study demonstrated that in vitro TMT exposure decreased ILC function of androgen production, via exerting negative effects on the mRNA/protein expression levels, or enzyme activities of STAR, CYP11A1, 17ß-HSD3, or NR5A1.


Assuntos
Androgênios/biossíntese , Células Intersticiais do Testículo/efeitos dos fármacos , Compostos de Trimetilestanho/toxicidade , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ratos Sprague-Dawley , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...